Graduation Year

2018

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Civil and Environmental Engineering

Major Professor

Manjriker Gunaratne, Ph.D.

Committee Member

Gray Mullins, Ph.D.

Committee Member

Mahmoud Nachabe, Ph.D.

Committee Member

Mauricio Arias, Ph.D.

Committee Member

Mingyang Li, Ph.D.

Committee Member

Ruiliang Pu, Ph.D.

Keywords

Computational Fluid Mechanics, Coupled Surface-Subsurface Fluid Flow, Finite Difference Method, Remotely Sensed Soil Moisture, Stochastic Methods

Abstract

Landslides cause significant damage to property and human lives throughout the world. Rainfall is the most common triggering factor for the occurrence of landslides. This dissertation presents two novel methodologies for assessment of rainfall-triggered shallow landslide hazard. The first method focuses on using remotely sensed soil moisture and soil surface properties in developing a framework for real-time regional scale landslide hazard assessment while the second method is a deterministic approach to landslide hazard assessment of the specific sites identified during first assessment. In the latter approach, landslide inducing transient seepage in soil during rainfall and its effect on slope stability are modeled using numerical analysis.

Traditionally, the prediction of rainfall-triggered landslides has been performed using pre-determined rainfall intensity-duration thresholds. However, it is the infiltration of rainwater into soil slopes which leads to an increase of porewater pressure and destruction of matric suction that causes a reduction in soil shear strength and slope instability. Hence, soil moisture, pore pressure and infiltration properties of soil must be direct inputs to reliable landslide hazard assessment methods. In-situ measurement of pore pressure for real-time landslide hazard assessment is an expensive endeavor and thus, the use of more practical remote sensing of soil moisture is constantly sought. In past studies, a statistical framework for regional scale landslide hazard assessment using remotely sensed soil moisture has not been developed. Thus, the first major objective of this study is to develop a framework for using downscaled remotely sensed soil moisture available on a daily basis to monitor locations that are highly susceptible to rainfall-

triggered shallow landslides, using a well-structured assessment procedure. Downscaled soil moisture, the relevant geotechnical properties of saturated hydraulic conductivity and soil type, and the conditioning factors of elevation, slope, and distance to roads are used to develop an improved logistic regression model to predict the soil slide hazard of soil slopes using data from two geographically different regions. A soil moisture downscaling model with a proven superior prediction accuracy than the downscaling models that have been used in previous landslide studies is employed in this study. Furthermore, this model provides satisfactory classification accuracy and performs better than the alternative water drainage-based indices that are conventionally used to quantify the effect that elevated soil moisture has upon the soil sliding. Furthermore, the downscaling of soil moisture content is shown to improve the prediction accuracy. Finally, a technique that can determine the threshold probability for identifying locations with a high soil slide hazard is proposed.

On the other hand, many deterministic methods based on analytical and numerical methodologies have been developed in the past to model the effects of infiltration and subsequent transient seepage during rainfall on the stability of natural and manmade slopes. However, the effects of continuous interplay between surface and subsurface water flows on slope stability is seldom considered in the above-mentioned numerical and analytical models. Furthermore, the existing seepage models are based on the Richards equation, which is derived using Darcy’s law, under a pseudo-steady state assumption. Thus, the inertial components of flow have not been incorporated typically in modeling the flow of water through the subsurface. Hence, the second objective of this study is to develop a numerical model which has the capability to model surface, subsurface and infiltration water flows based on a unified approach, employing fundamental fluid dynamics, to assess slope stability during rainfall-induced transient seepage conditions. The developed model is based on the Navier-Stokes equations, which possess the capability to model surface, subsurface and infiltration water flows in a unified manner. The extended Mohr-Coulomb criterion is used in evaluating the shear strength reduction due to infiltration. Finally, the effect of soil hydraulic conductivity on slope stability is examined. The interplay between surface and subsurface water flows is observed to have a significant impact on slope stability, especially at low hydraulic conductivity values. The developed numerical model facilitates site-specific calibration with respect to saturated hydraulic conductivity, remotely sensed soil moisture content and rainfall intensity to predict landslide inducing subsurface pore pressure variations in real time.

Share

COinS