Graduation Year

2019

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Electrical Engineering

Major Professor

Wilfrido A. Moreno, Ph.D.

Committee Member

Sanjukta Bhanja, Ph.D.

Committee Member

Fernando Falquez, Ph.D.

Committee Member

John Kuhn, Ph.D.

Committee Member

Eduardo Rojas-Nastucci, Ph.D.

Committee Member

Paris Wiley, Ph.D.

Keywords

Finite Element Modeling, Scanning Auger Microscopy, Non-Destructive Evaluation, Electron Optics, Laser Beam Machining, Secondary Electron Emission

Abstract

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in the CMA. Laser Beam Machining, (LBM), of copper substrates was used to create copper pillars with very high surface areas, which were designed to supress SE’s. The LBM was performed with a Lumera SUPER RAPID‐HE model Neodymium Vanadate laser. The laser has a peak output power of 30 megawatts, has a 5x lens and a spot size of 16 μm. The laser wavelength is in the infrared at 1064 nm, a pulse width of 15 picoseconds, and pulse repetition rate up to 100 kHz. The spectrometer used in this research is intended for use when performing chemical analysis of the surface of bulk materials and thin films. It is applicable for metrology of thin films, as low as 0.4 nm in thickness, without the need to perform destructive sample thinning, which is required in Scanning Tranmission Electron Microscopy, (STEM).

The spectrometer design is based on the well known and widely used coaxial cylinder capacitor design known as the Cylindrical Mirror Analyzer, (CMA). The coaxial tube arrangement of the CMA allows for placing an electron source,which is mounted in the center of the inner cylinder of the spectrometer. Simulation of the electron source with an Einzel Lens was also performed. In addtion, experiments with thin film coatings and Laser Beam Machining to supress Secondary Electron emission noise within the Auger electron spectrum were completed.

Design geometry for the miniature CMA were modeled using Computer Aided Design, (CAD). Fixed Boundary Conditions, (BC), were applied and the geometry was then meshed for FEM. The electrostatic potential was then solved using the Poisson equation at each point. Having found the solution to the electrostatic potentials, electron flight simulations were performed and compared with the analytical solution. From several commercially available FEM modeling packages, COMSOL Multiphysics was chosen as the research platform for modeling of the spectrometer design. The CMA in this design was reduced in size by a factor of 4 to 5. This enabled mounting the CMA on a 2 ¾ in flange compared to the commercial PHI model 660 CMA which mounts onto a 10 in flange. Results from the Scanning Electron Microscopy measurements of the Secondary Electron emission characteristics of the LBM electron suppressor will also be presented.

Share

COinS