Graduation Year
2018
Document Type
Thesis
Degree
M.S.E.E.
Degree Name
MS in Electrical Engineering (M.S.E.E.)
Degree Granting Department
Electrical Engineering
Major Professor
Thomas Weller, Ph.D.
Committee Member
Larry Dunleavy, Ph.D.
Committee Member
Gokhan Mumcu, Ph.D.
Keywords
Direct-Print Additive Manufacturing (DPAM), Complex Permittivity, Capacitance, Circuit Model, S-Parameters
Abstract
Two methods of dielectric characterization are presented that offer quick and cost-effective solutions for screening complex dielectric material properties. Through Direct-Print Additive Manufacturing (DPAM) methods, a dielectric material of choice is dispensed into a capacitor structure and characterized through 1-port s-parameter measurements. The presented methods use fixtures that are modeled and validated through simulation then implemented in practice. Advanced simulations are performed to gain insights which are used to optimize the dielectric characterization performance of the fixtures. Additional investigations are performed which investigate the durability of the fixture and material within by exposing the combination to rough environmental conditions for an extended duration. The presented capacitor structures are investigated to characterize dielectric materials within the bandwidth of 0.1-15 GHz, saving the time and effort required in using multiple dielectric characterization methods that cover the same bandwidth. Both methods are compared based on the results for each method achieved in practice while considering the process required perform each method. The pros and cons of the presented characterization methods are weighed which highlights the key aspects for successfully characterizing dielectric materials with each method as well as revealing the potential limitations associated with each.
Scholar Commons Citation
York, Seth, "Microwave Characterization of Printable Dielectric Inks Using Additive Manufacturing Methods" (2018). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/7385