Graduation Year
2005
Document Type
Thesis
Degree
M.S.E.E.
Degree Granting Department
Electrical Engineering
Major Professor
Shekhar Bhansali, Ph.D.
Committee Member
Larry Langebrake, P.E.
Committee Member
Kenneth Buckle, Ph.D.
Committee Member
Sang Chae Kim, Ph.D.
Keywords
Transition elements, Gold, Diffusion, Resistivity, Resistance
Abstract
A bulk silicon temperature sensor is fabricated in this work. The objective is to develop a low-cost high resolution temperature sensor. The target applications are a Conductivity-Temperature-Depth (CTD) sensor for oceanic applications and a magnetocaloric microcooler.
The properties of silicon are modified by thermal diffusion of gold. Gold is a fast diffuser in silicon and its diffusion contributes to the increase in resistivity of silicon. The addition of gold to n-type silicon creates a negative temperature coefficient device. The effect of the diffusing environment was investigated by diffusing in oxygen and nitrogen ambient at various temperatures. The influence of area of gold diffusion was also investigated. The effect of temperature on resistance was measured and was used to calibrate the sensor.
Although the sensors fabricated in an oxygen environment have an exponential type response, they can be used in the CTD application because of enhanced sensitivity in the 10˚C - 30˚C temperature range. Sensors fabricated in a nitrogen environment are found to have linear response with sensitivity ranging from 7Ω/˚C to 3000Ω/˚C and can be used for both applications. The fabricated sensors have a 0.1˚C resolution.
Scholar Commons Citation
Kishanlal Premchand, Bharath Bethala, "Bulk Silicon Based Temperature Sensor" (2005). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/726