Graduation Year
2017
Document Type
Thesis
Degree
M.S.E.E.
Degree Name
MS in Electrical Engineering (M.S.E.E.)
Degree Granting Department
Electrical Engineering
Major Professor
Andrew Hoff, Ph.D.
Committee Member
Stephen E. Saddow, Ph.D.
Committee Member
Richard Gilbert, Ph.D.
Keywords
Ion Mobility Spectrometry, Mass Spectrometry, Planar Sensor, Coaxial Sensor, High-Field Asymmetric-Waveform
Abstract
Differential Mobility Spectrometry (DMS) using a non-radioactive ion source (NRIS) is investigated as a possible medical diagnostic instrument for near real-time detection of breast cancer biomarkers. In previous clinical studies, concentrations of Linoleic, Palmitic and Stearic fatty acids have been observed at different levels in women with carcinoma breast cancer versus women with benign tumors or healthy women showing no signs of breast cancer. Present diagnostic methods require a biopsy of the suspect tissue and a microscopic lab analysis performed to determine its disease state. This process can take hours or days before the patient and doctor are informed of the results. Controlled volumetric samples of each fatty acid listed above were introduced into a DMS instrument, using a NRIS, to determine detectability of each acid. The results provide proof-of-concept that Linoleic, Palmitic and Stearic fatty acids can be uniquely identified by varying the sample temperature and scanning the ionized fatty acid molecules in both the negative and positive ion mode of the DMS instrument. Detection response times range from 2 to 6 seconds for initial detection up to 35 seconds for peak detection. The Limit of Detection for the DMS instrument is estimated in the low parts per billion.
Scholar Commons Citation
Alberti, James Joseph, "Fatty Acid Biomarker Detection for Breast Cancer Using Differential Mobility Spectrometry with Non-Radioactive Ion Source" (2017). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/6611
Included in
Analytical Chemistry Commons, Electrical and Computer Engineering Commons, Oncology Commons