Graduation Year

2016

Document Type

Thesis

Degree

M.S.C.E.

Degree Name

MS in Civil Engineering (M.S.C.E.)

Degree Granting Department

Civil and Environmental Engineering

Major Professor

Abla Zayed, Ph.D.

Committee Member

Rajan Sen, Ph.D.

Committee Member

Kyle Riding, Ph.D.

Keywords

Cracking Risk, Temperature Reactivity, Pore Distribution, Phase Transformation

Abstract

Metakaolin is a pozzolanic material with the potential to reduce permeability and chloride ingress; however, quantification of the effects of metakaolin use on the cracking sensitivity of concrete mixtures is needed to ensure that these improvements in performance are not compromised. This study was conducted to investigate the early age cracking potential due to restraint stresses from incorporating metakaolin in concrete. Calorimetry testing showed that metakaolin was more sensitive to temperature than mixtures with only Portland cement. Results showed more shrinkage, less stress relaxation, and higher restraint stress from the inclusion of metakaolin, potentially increasing cracking sensitivity of mixtures.

1 This section was published in Construction and Building Materials[57]. Permission is included in Appendix A

Share

COinS