Graduation Year
2016
Document Type
Thesis
Degree
M.S.
Degree Name
Master of Science (M.S.)
Degree Granting Department
Computer Science and Engineering
Major Professor
Dmitry B. Goldgof, Ph.D.
Committee Member
Rangachar Kasturi, Ph.D.
Committee Member
Yu Sun, Ph.D.
Keywords
Whimpering, Vigorous Crying, K-Nearest Neighbors, Random Forests, Least Squares Support Vector Machines
Abstract
Crying is infants utilize to express their emotional state. It provides the parents and the nurses a criterion to understand infants’ physiology state. Many researchers have analyzed infants’ crying sounds to diagnose specific diseases or define the reasons for crying. This thesis presents an automatic crying level assessment system to classify infants’ crying sounds that have been recorded under realistic conditions in the Neonatal Intensive Care Unit (NICU) as whimpering or vigorous crying. To analyze the crying signal, Welch’s method and Linear Predictive Coding (LPC) are used to extract spectral features; the average and the standard deviation of the frequency signal and the maximum power spectral density are the other spectral features which are used in classification. For classification, three state-of-the-art classifiers, namely K-nearest Neighbors, Random Forests, and Least Squares Support Vector Machine are tested in this work, and the experimental result achieves the highest accuracy in classifying whimper and vigorous crying using the clean dataset is 90%, which is sampled with 10 seconds before scoring and 5 seconds after scoring and uses K-nearest neighbors as the classifier.
Scholar Commons Citation
Pai, Chih-Yun, "Automatic Pain Assessment from Infants’ Crying Sounds" (2016). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/6560