Graduation Year

2016

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Public Health

Major Professor

Raymond D. Harbison, Ph.D.

Committee Member

Giffe T. Johnson, Ph.D.

Committee Member

Marie M. Bourgeois, Ph.D.

Committee Member

Nicholas Hall, Ph.D.

Keywords

Oxygen Tension, Citric Acid Cycle, Acrolein, Differentiated H9c2 Cells

Abstract

Most in vitro systems employ the standard cell culture maintenance conditions of 95 % air with 5 % CO2 to balance medium pH, which translates to culture oxygen tensions of approximately 20 % - above the typical ≤ 6 % found in most tissues. The current investigation, therefore, aims to characterize the effect of maintenance and toxicant exposure with a particular focus on the α,β-unsaturated aldehyde, acrolein, in the presence of physiologically relevant oxygen tension using a differentiated H9c2 cardiomyoblast subclone. H9c2 cells were maintained separately in 20.1 and 5 % oxygen, after which cells were differentiated for five days, and then exposed to acrolein in media containing varying concentrations of tricarboxylic acid and glycolytic substrates. Cells were then assessed for viability and metabolism via the MTT conversion assay. H9c2 cells were assessed for mechanistic elucidation to characterize contributors to cellular death, including mitochondrial membrane potential (ΔΨm) reductions (JC-1), intracellular calcium influx (Fluo-4), and PARP activation. Exposure to acrolein in differing oxygen tensions revealed that standard culture cells are particularly sensitive to acrolein, but cells cultured in 5 % oxygen, depending on the medium pyruvate concentration, can be rescued significantly. Further, reductions in ΔΨm were reversed by co-exposure of 5-10 mM EGTA for both culture conditions, while intracellular calcium transients were noted only for standard cultures. The results demonstrate significant metabolic reprogramming which desensitizes differentiated H9c2 to acrolein-induced cytotoxicity. Further, PARP and extracellular calcium contribute to the fate of these cells exposed to acrolein, though clotrimazole-associated TRPM2 channels may not be significantly involved. Conclusively, significant alteration of toxicogenic response was noted in this cell line when cultured under physiologically relevant conditions, and may have a substantial impact on the reliability and predictive power and interpretive application of in vitro-based toxicity models cultured under standard culture conditions, depending on the parent tissue.

Included in

Toxicology Commons

Share

COinS