Graduation Year
2016
Document Type
Thesis
Degree
Ph.D.
Degree Name
Doctor of Philosophy (Ph.D.)
Degree Granting Department
Mathematics and Statistics
Major Professor
Yuncheng You, Ph.D.
Committee Member
Mohamed Elhamdadi, Ph.D.
Committee Member
Sherwin Kouchekian, Ph.D.
Committee Member
Marcus McWaters, Ph.D.
Keywords
Global Attractor, Random Attractor, Boissonade Equations, Stochastic Brusselator
Abstract
The dissertation studies about the existence of three different types of attractors of three multi-component reaction-diffusion systems. These reaction-diffusion systems play important role in both chemical kinetics and biological pattern formation in the fast-growing area of mathematical biology.
In Chapter 2, we prove the existence of a global attractor and an exponential attractor for the solution semiflow of a reaction-diffusion system called Boissonade equations in the L2 phase space. We show that the global attractor is an (H, E) global attractor with the L∞ and H2 regularity and that the Hausdorff dimension and the fractal dimension of the global attractor are finite. The existence of exponential attractor is also shown. The upper-semicontinuity of the global attractors with respect to the reverse reaction rate coefficient is proved.
In Chapter 3, the existence of a pullback attractor for non-autonomous reversible Selkov equations in the product L2 phase space is proved. The method of grouping and rescaling estimation is used to prove that the L4-norm and L6-norm of solution trajectories are asymptotic bounded. The new feature of pinpointing a middle time in the process turns out to be crucial to deal with the challenge in proving pullback asymptotic compactness of this typical non-autonomous reaction-diffusion system.
In Chapter 4, asymptotical dynamics of stochastic Brusselator equations with multiplicative noise is investigated. The existence of a random attractor is proved via the exponential transformation of Ornstein-Uhlenbeck process and some challenging estimates. The proof of pullback asymptotic compactness here is more rigorous through the bootstrap pullback estimation than a non-dynamical substitution of Brownian motion by its backward translation. It is also shown that the random attractor has the L2 to H1 attracting regularity by the flattening method.
Scholar Commons Citation
Tu, Junyi, "Global Attractors and Random Attractors of Reaction-Diffusion Systems" (2016). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/6418