Graduation Year

2016

Document Type

Thesis

Degree

M.S.

Degree Name

Master of Science (M.S.)

Degree Granting Department

Chemistry

Major Professor

H. Lee Woodcock, Ph.D.

Co-Major Professor

Yu Chen, Ph.D.

Committee Member

Ionis Gelis, Ph.D.

Keywords

NMR, QM/MM, DFT

Abstract

The spectroscopic analysis of cellulose is experimentally challenging while computationally accessible with recent developments in NMR code. However, prior to using density functional theory to calculate the NMR chemical shifts of cellulose, smaller, sugar-like molecule systems need to be benchmarked against experimental values. The quantum mechanical / molecular mechanical (QM/MM) calculations presented herein utilize six test systems: ethanol, pyridine, pyrrolidine, pyrrole, myo-inositol and scyllo-inositol in conjunction with the reference tetramethylsilane used to scale the calculated isotropic shielding tensors to relative chemical shifts. The effect of solvent on calculated NMR chemical shifts has also been investigated with regard to quantity of solvent surrounding the molecule of interest. Lastly, a mixed basis approach with two quantum regions has additionally been employed to investigate the effects of the number of basis functions on the relative cost of QM/MM NMR calculations.

Included in

Chemistry Commons

Share

COinS