Graduation Year

2016

Document Type

Thesis

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Industrial and Management Systems Engineering

Major Professor

Tapas Das, Ph.D.

Co-Major Professor

Shuai Huang, Ph.D.

Committee Member

Jose Zayas Castro, Ph.D.

Committee Member

Lawrence O. Hall, Ph.D.

Committee Member

Dave Morgan, Ph.D.

Keywords

Decision Tree, RuleFit, Machine Learning, Biomarker Identification, Item Response Theory

Abstract

In this dissertation we present rule-based machine learning methods for solving problems with high-dimensional or complex datasets. We are applying decision tree methods on blood-based biomarkers and neuropsychological tests to predict Alzheimer’s disease in its early stages. We are also using tree-based methods to identify disparity in dementia related biomarkers among three female ethnic groups. In another part of this research, we tried to use rule-based methods to identify homogeneous subgroups of subjects who share the same risk patterns out of a heterogeneous population. Finally, we applied a network-based method to reduce the dimensionality of a clinical dataset, while capturing the interaction among variables. The results show that the proposed methods are efficient and easy to use in comparison to the current machine learning methods.

Share

COinS