Graduation Year
2015
Document Type
Dissertation
Degree
Ph.D.
Degree Name
Doctor of Philosophy (Ph.D.)
Degree Granting Department
Information Systems and Decision Sciences
Major Professor
Balaji Padmanabhan, Ph.D.
Co-Major Professor
Alan R. Hevner, Ph.D.
Committee Member
Terry L. Sincich, Ph.D.
Committee Member
Wolfgang S. Jank, Ph.D.
Keywords
heuristics, adaptive toolbox, churn, somatic markers, Pareto optimal sets, skylines
Abstract
How can we predict key decisions made by organizations in the presence of big data and on-demand information? In this dissertation we exploit a large repository of B2B real-time transactional data with service quality indicators and present evidence that organizational decision analytics apply both rational and boundedly-rational (i.e. behavioral) economic models. The dissertation’s findings demonstrate that both utility and heuristic models, respectively, play significant roles in predicting organizational decisions on churn, a key decision in this context. In the presence of a large data set the assumed rationality of organizations appears to provide accurate predictions in uncontrolled experiences and selected boundedly-rational decision rules appear to cause somatic states that make organizations more sensitive to past total qualities of service. This dissertation makes significant new contributions to the understanding of how organizations can effectively use big data to make key operational decisions. As a managerial implication, organizations must be alert to heuristics that might exacerbate the impact of total service pain on customer’s decision to churn.
Scholar Commons Citation
Barfar, Arash, "Predictive Analytics of Organizational Decisions and the Role of Rationality" (2015). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/5907
Included in
Business Administration, Management, and Operations Commons, Databases and Information Systems Commons