Graduation Year
2015
Document Type
Dissertation
Degree
Ph.D.
Degree Name
Doctor of Philosophy (Ph.D.)
Degree Granting Department
Electrical Engineering
Major Professor
Arash Takshi, Ph.D.
Committee Member
Rudy Schlaf, Ph.D.
Committee Member
Shengqian Ma, Ph.D.
Committee Member
Jing Wang, Ph.D.
Committee Member
Nathan Gallant, Ph.D.
Keywords
Solar Energy Conversion, Photoactive Films, Rhodobacter Sphaeroides, Photosynthetic Protein Complexes
Abstract
Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic bacteria harvest light, through special proteins called reaction centers (RCs), with high efficiency and convert it into electrochemical energy. In theory, photosynthetic RCs can be used in a device to harvest solar energy and generate 1.1 V open circuit voltage and ~1 mA cm-2 short circuit photocurrent. Considering the nearly perfect quantum yield of photo-induced charge separation, efficiency of a protein-based solar cell might exceed 20%. In practice, the efficiency of fabricated devices has been limited mainly due to the challenges in the electron transfer between the protein complex and the device electrodes as well as limited light absorption. The overarching goal of this work is to increase the power conversion efficiency in protein-based solar cells by addressing those issues (i.e. electron transfer and light absorption). This work presents several approaches to increase the charge transfer rate between the photosynthetic RC and underlying electrode as well as increasing the light absorption to eventually enhance the external quantum efficiency (EQE) of bio-hybrid solar cells. The first approach is to decrease the electron transfer distance between one of the redox active sites in the RC and the underlying electrode by direct attachment of the of protein complex onto Au electrodes via surface exposed cysteine residues. This resulted in photocurrent densities as large as ~600 nA cm-2 while still the incident photon to generated electron quantum efficiency was as low as %3 × 10-4. 2- The second approach is to immobilize wild type RCs of Rhodobacter sphaeroides on the surface of a Au underlying electrode using self-assembled monolayers of carboxylic acid terminated oligomers and cytochrome c charge mediating layers, with a preferential orientation from the primary electron donor site. This approach resulted in EQE of up to 0.06%, which showed 200 times efficiency improvement comparing to the first approach. In the third approach, instead of isolated protein complexes, RCs plus light harvesting (LH) complexes were employed for a better photon absorption. Direct attachment of RC-LH1 complexes on Au working electrodes, resulted in 0.21% EQE which showed 3.5 times efficiency improvement over the second approach (700 times higher than the first approach). The main impact of this work is the harnessing of biological RCs for efficient energy harvesting in man-made structures. Specifically, the results in this work will advance the application of RCs in devices for energy harvesting and will enable a better understanding of bio and nanomaterial interfaces, thereby advancing the application of biological materials in electronic devices. At the end, this work offers general guidelines that can serve to improve the performance of bio-hybrid solar cells.
Scholar Commons Citation
Yaghoubi, Houman, "Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes" (2015). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/5803
Included in
Electrical and Computer Engineering Commons, Materials Science and Engineering Commons, Oil, Gas, and Energy Commons