Graduation Year

2015

Document Type

Thesis

Degree

M.S.

Degree Name

Master of Science (M.S.)

Degree Granting Department

Geology

Major Professor

Charles B. Connor, Ph.D.

Co-Major Professor

Graham A. Tobin, Ph.D.

Committee Member

Sylvain J. Charbonnier, Ph.D.

Keywords

Distributed Volcanism, Monogenetic Volcanism, Risk Perception, Volcano

Abstract

This thesis examines different methods of communicating volcanic hazards to the population of Flagstaff, Arizona using the results of a recent lava flow hazard assessment of the nearby San Francisco Volcanic Field (SFVF). Harburger (2014) determined that given a lava flow originating in the SFVF, there is a statistical probability that it will inundate the city of Flagstaff or even originate from a vent within the city limits. Based on the recurrence rates for the most recent eruptions (3 x 10-4/year), the probability of lava flow inundation in Flagstaff is 1.1 x 10-5 per year.

This study considers the effects of three different communication methods on participants’ perceived risk. The methods were administered through a questionnaire and included a statement of probability of lava flow inundation per year, a statement of probability over a 100 year period, and an interactive lava flow map derived from the results of the lava flow hazard assessment. Each method was followed by questions gauging level of concern. Questionnaires were administered to 213 Flagstaff residents over a two week period in February 2015.

Results showed that levels of concern, rated from 1 (not concerned) to 5 (very concerned), varied based on each method of communication. The method with the greatest effect on perceived risk was the simulated lava flow map, while the first method with a one year odds resulted in a statistically lower mean rating of concern. It is suggested that the best way to change levels of perceived risk when communicating lava flow hazards includes a combination of comprehensible odds and visual aids. Further studies could also include visualization of the entire eruption scenario, including time scales and other volcanic hazards, which may have more effect on concern than a simplified visualization of lava flows.

Included in

Geology Commons

Share

COinS