Graduation Year

2014

Document Type

Thesis

Degree

M.S.

Degree Granting Department

Geography, Environment and Planning

Major Professor

Jennifer Collins, Ph.D.

Committee Member

Todd Barron, M.S.

Committee Member

Kamal Alsharif, Ph.D.

Keywords

Climate, Florida, Forecasting, Hail, Variables, Weather

Abstract

ABSTRACT

Hail poses a substantial threat to life and property in the state of Florida. These losses could be minimized through better understanding of the relationships between atmospheric variables that impact hail formation in Florida. Improving hail forecasting in Florida requires analyzing a number of meteorological parameters and synoptic data related to hail formation.

NOAA archive data was retrieved to create a database that was used to categorize text files of hail days. The text files were entered into the National Oceanic and Atmospheric Administration Earth System Research Laboratory website to create National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis maps of atmospheric variables for Florida hail days as well as days leading to the hail event. These data were then analyzed to determine the relationship between variables that affect hail formation, in general, across different regions and seasons in Florida using Statistical Product and Service Solutions. The reasoning for the differing factors affecting hail formation between regions, seasons and hail sizes were discussed, as well as forecasting suggestions relating to region and month in Florida. The study found that the majority of all hail that occurs in Florida is during the wet season. A low Lifted Index, high Precipitable Water and lower than average Sea Level Pressure, in most cases, is present during hail days in Florida. Furthermore, results show that Vector Wind magnitude increases as hail size increases. Additionally, several atmospheric variables useful to studying hail events, such as Lifted Index, Precipitable Water, Sea Level Pressure, Vector Wind and Temperature have significant correlations with each other depending on the region and season being observed. Strong correlations between low Lifted Index, high Precipitable Water values and the occurrence of hail events are discussed, as well as the relationship between temperature anomalies at various pressure levels and the occurrence of hail events.

Share

COinS