Graduation Year

2013

Document Type

Thesis

Degree

M.S.

Degree Granting Department

Chemistry

Major Professor

Brian Space

Keywords

Electronic structure calculations, Metal-organic Frameworks, potential energy function

Abstract

Intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parameterized from nearly exact electronic structure calculations. Models with and without explicit many-body polarization effects, known to be important in simulation of interfacial processes, are constructed. The models have been validated on pressure-density isotherms of bulk CO2 and adsorption in three metal-organic framework (MOF) materials. The present models appear to offer advantages over high quality fluid/liquid state potentials in describing CO2 interactions in interfacial environments where sorbates adopt orientations not commonly explored in bulk fluids. Thus, the nonpolar CO2-PHAST and polarizable CO2-PHAST* potentials are recommended for materials/interfacial simulations.

Included in

Chemistry Commons

Share

COinS