Graduation Year
2013
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Electrical Engineering
Major Professor
Andrew Hoff
Co-Major Professor
Ashok Kumar
Keywords
Corona-Kelvin metrology, frequency tunable, RF magnetron sputtering, sol-gel deposition, supercapacitors
Abstract
Barium Strontium Titanate (BST) based ferroelectric thin film devices have been popular over the last decade due to their versatile applications in tunable microwave devices such as delay lines, resonators, phase shifters, and varactors. BST thin films are promising candidates due to their high dielectric constant, tunability and low dielectric loss. Dielectric-tunable properties of BST films deposited by different deposition techniques have been reported which study the effects of factors, such as oxygen vacancies, film thickness, grain size, Ba/Sr ratio, etc. Researchers have also studied doping concentrations, high temperature annealing and multilayer structures to attain higher tunability and lower loss. The aim of this investigation was to study material properties of Barium Strontium Titanate from a comprehensive point of view to establish relations between various growth techniques and the film physical and electrical properties.
The primary goal of this investigation was to synthesize and characterize RF magnetron sputtered Barium Strontium Titanate (Ba1-xSrxTiO3), thin film structures and compare their properties with BST thin films deposited by sol-gel method with the aim of determining relationships between the oxide deposition parameters, the film structure, and the electric field dependence. In order to achieve higher thickness and ease of fabrication, and faster turn around time, a `stacked' deposition process was adopted, wherein a thin film (around 200nm) of BST was first deposited by RF magnetron sputtering process followed by a sol-gel deposition process to achieve higher thickness. The investigation intends to bridge the knowledge gap associated with the dependence of thickness variation with respect to the tunability of the films. The film structures obtained using the three different deposition methods were also compared with respect to their analytical and electrical properties. The interfacial effect on these `stacked' films that enhance the properties, before and after annealing these structures was also studied.
There has been significant attention given to Graphene-based supercapacitors in the last few years. Even though, supercapacitors are known to have excellent energy storage capability, they suffer from limitations pertaining to both cost and performance. Carbon (CNTs), graphene (G) and carbon-based nanocomposites, conducting polymers (polyaniline (PANI), polypyrrole (PPy), etc.) have been the fore-runners for the manufacture of supercapacitor electrodes. In an attempt to better understand the leakage behavior of Graphene Polyaniline (GPANI) electrodes, BST and BST thin films were incorporated as constituents in the process of making supercapacitor electrodes resulting in improved leakage behavior of the electrochemical cells. A detailed physical, chemical and electrochemical study of these electrochemical cells was performed.
The BST thin films deposited were structurally characterized using Veeco Dektek thickness profilometer, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The interfacial structural characterization was carried out using high-resolution transmission electron microscopy (HRTEM). This investigation, also presents noncontact electrical characterization of BST films using Corona Kelvin metrology (C-KM).
The `stacked' BST thin films and devices, which were electrically tested using Corona Kelvin metrology, showed marked improvement in their leakage characteristics over both, the sputtered and the sol-gel deposited counterparts. The `stacked' BST thin film samples were able to withstand voltages up to 30V positive and negative whereas, the sol-gel and sputtered samples could hold only up to a few volts without charge leaking to reduce the overall potential. High frequency, 1GHz, studies carried out on BST thin film interdigitated capacitors yielded tunability near 43%.
Leakage barrier studies demonstrated improvement in the charging discharging response of the GPANI electrochemical electrodes by 40% due to the addition of BST layer.
Scholar Commons Citation
Ketkar, Supriya Ashok, "Synthesis, Characterization and Applications of Barium Strontium Titanate Thin Film Structures" (2013). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/4700