Graduation Year
2013
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Electrical Engineering
Major Professor
Sylvia W. Thomas
Keywords
Aerospace, Antimony, Cobalt, Laser Interaction, Tin
Abstract
Recent trends in composite research include the development of structural materials with multiple functionalities. In new studies, novel materials are being designed, developed, modified, and implemented into composite designs. Typically, an increase in functionality requires additional material phases within one system. The presence of excessive phases can result in deterioration of individual or overall properties. True multi-functional materials must maintain all properties at or above the minimum operating limit. In this project, samples of antimony and cobalt-doped tin oxide (ATO(Co2O3)) sol-gel solutions are used to coat carbon fibers and are heat treated at a temperature range of 200 - 500 °C. Results from this research are used to model the implementation of sol-gel coatings into carbon fiber reinforced multifunctional composite systems. This research presents a novel thermo-responsive sol-gel/ (dopant) combination and evaluation of the actuating responses (reflectivity and surface heat dissipation) due to various heat treatment temperatures. While ATO is a well-known transparent conductive material, the implementation of ATO on carbon fibers for infrared thermal reflectivity has not been examined. These coatings serve as actuators capable of reflecting thermal infrared radiation in the near infrared wavelengths of 0.7-1.2 μm. By altering the level of Co2O3 and heat treatment temperatures, optimal optical properties are obtained. While scanning electron microscopy (SEM) is used for imaging, electron diffraction
spectroscopy (EDS) is used to verify the compounds present in the coatings. Fourier transform infrared (FT-IR) spectroscopy was performed to analyze the chemical bonds and reflectivity in the infrared spectra after the heat treatments. Total reflection and angle-dependent reflectivity measurements were performed on the coatings in the wavelengths of 0.7-2 μm. Laser induced damage threshold testing was done to investigate the dielectric breakdown and used to calculate surface temperatures.
Scholar Commons Citation
Richard, Brandon Demar, "Thermal Infrared Reflective Metal Oxide Sol-Gel Coatings for Carbon Fiber Reinforced Composite Structures" (2013). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/4569