Graduation Year

2013

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Geology

Major Professor

Sarah Kruse

Co-Major Professor

Charles Connor

Keywords

advection-diffusion, model literacy, pyroclast, quantitative literacy, tephra

Abstract

Our understanding of tephra depositional processes is significantly improved by high-resolution ground-penetrating radar (GPR) data collected at Cerro Negro volcano, Nicaragua. The data reveal three depositional regimes: (1) a near-vent region on the cone itself, where 10 GPR radargrams collected on the western flank show quantifiable differences between facies formed from low energy normal Strombolian and higher energy violent Strombolian processes, indicating imaging of scoria cone deposits may be useful in distinguishing eruptive style in older cones where the proximal to distal tephra blanket has eroded away; (2) a proximal zone in which horizons identified in crosswind profiles collected at distances of 700 and 1,000 m from the vent exhibit Gaussian distributions with a high degree of statistical confidence, with tephra thickness decreasing exponentially downwind from the cone base (350 m) to ~ 1,200 m from the vent, and where particles fall from a height of less than ~2 km; and (3) a medial zone, in which particles fall from ~4 to 7 km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit, indicating a transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud. Horizons identified in a crosswind profile at 1600 m from vent exhibit Gaussian distributions, again with high degrees of statistical confidence.

True diffusion coefficients are calculated from Gaussian fits of crosswind profiles and do not show any statistical variation between zones (2) and (3). Data display thinning trends that agree with the morphology predicted by the advection-diffusion equation to a high degree of statistical confidence, validating the use of this class of models in tephra forecasting.

One such model, the Tephra2 model, is reformulated for student use. A strategy is presented for utilizing this research-caliber model to introduce university undergraduates to key concepts in model literacy, encouraging students to develop a deeper understanding of the applicability and limitations of hazard models generally. For this purpose, the Tephra2 numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials, and provides students with the ability to explore and execute sophisticated numerical models like Tephra2.

Share

COinS