Graduation Year

2012

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Chemistry

Major Professor

Jon C. Antilla

Keywords

aziridine, desymmetrization, imine, Organocatalysis, phosphate salt, phosphoric acid

Abstract

Chiral molecules as with biological activity are plentiful in nature and the chemical literature; however they represent a smaller portion of the pharmaceutical drug market. As asymmetric methodologies grow more powerful, the tools are becoming available to synthesize chiral molecules in an enantioselective and efficient manner.

Recent breakthroughs in our understanding of phosphoric acid now allow for Lewis acid catalysis via pairing with alkaline earth metals. Using alkaline earth metals with chiral phosphates is an emerging approach to asymmetric methodology, but already has an influential record.

The development of new conditions for the phosphoric acid-catalyzed highly enantioselective ring-opening of meso-aziridines with a series of functionalized aromatic thiol nucleophiles is described in this thesis. This methodology utilizes commercially available aromatic thiols, a series of meso-aziridines, and a catalytic amount of VAPOL calcium phosphate to explore the substrate scope of this highly enantioselective reaction.

Additionally, the development of new conditions for a catalytic asymmetric aza-Darzens aziridine synthesis mediated by a vaulted biphenanthrol (VAPOL) magnesium phosphate salt is described in this thesis. Using simple substrates, this methodology explores the scope and reactivity of a new magnesium catalyst for an aziridination reaction capable of building chirality and complexity simultaneously.

Share

COinS