Graduation Year
2012
Document Type
Thesis
Degree
M.S.C.H.
Degree Granting Department
Chemical Engineering
Major Professor
Norma Alcantar, Ph.D.
Co-Major Professor
Andres M. Cardenas-Valencia, Ph.D.
Committee Member
Ryan Toomey, Ph.D.
Keywords
Non-Ionic Surfactant, Niosomes, Hydrogen Peroxide Encapsulation, Poly(N-isopropylacrylamide), Aluminum / Hydrogen Peroxide Galvanic Cell
Abstract
The work presented in this thesis aims to address the obstacles that side reactions create in aluminum / H2O2 galvanic cells by proposing to control the cathodic reactant, H2O2, via encapsulation. Encapsulation of the cathodic reactant is achieved utilizing a non-ionic surfactant vesicle (i.e. niosome). Once encapsulated, a second control element over the cathodic reactant is provided. The use of a polymer will be implemented to achieve stability and render further control over the encapsulated H2O2 solution. Implementation of the proposed novel cathodic control system in aluminum / H2O2 galvanic cells aims to minimize aluminum consumption and increase cell efficiency. Cell performance is evaluated by several electrical characteristics which include and are not limited to cell overall power output, cell operational time, and energy production per consumption of the aluminum anode. Results indicate an average energetic output value of 0.57 KJ +/- 0.09 KJ versus 0.542 KJ +/- 0.05 KJ without the implementation of the proposed cathodic control system. In addition, a decrease of 15% in average aluminum consumption value was achieved with the use of the proposed system.
Scholar Commons Citation
Colon, Marlyn, "Novel Encapsulation of Oxidizer Applied to Galvanic Cells: Aluminum / H2O2 Galvanic Cell as a Case Study" (2012). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/4017