Graduation Year

2012

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Geology

Major Professor

Ping Wang, Ph.D.

Co-Major Professor

Jeffrey Ryan Ph.D.

Committee Member

H.L. Vacher, Ph.D.

Committee Member

Mark Rains, Ph.D.

Committee Member

Jennifer Lewis, Ph.D.

Keywords

concept inventory, geoscience education, online course, term length

Abstract

Physical Geology is a popular general education course at Hillsborough Community College (HCC) as at many other colleges and universities. Unlike many science courses, most students taking Physical Geology are not majoring in a STEM (Science, Technology, Engineering, and Mathematics) discipline. Typically most students enrolled in Physical Geology are majoring in business, education, or pursuing a general A.A degree for transfer to a four-year university. The class is likely to be one of the few, if not the only, physical science classes that many of these students will take in their academic career. Therefore, this class takes on increased importance, as it will provide students with the foundation for scientific knowledge to be applied throughout their working careers.

Student performance in an online general education physical geology course was examined and compared in this three and a half-year study involving over 700 students. Student performance was compared on the basis of term length (sixteen week semester versus nine week summer term) and delivery method (online versus face-to-face). Four identical tests were given each term; the average score of four tests was used to evaluate overall student performance. Neither term length or delivery method has a significant influence on student test scores as demonstrated by similar average score per term, similar standard deviation, and similar distribution pattern. Student score distribution follows a normal distribution reasonably well. The commonly used ANOVA tests were conducted to confirm that there is no statistically significant difference in student performance.

A concept inventory of the geosciences can be valuable in providing a means to test if students are indeed learning geological concepts and to identify which misconceptions students are likely to enter class with so they can be addressed. Based on a set of 16 Geoscience Concept Inventory questions selected by the instructor, no difference in student performance was found between pre-test and post-test in terms of average score and score distribution. Some misconceptions were identified by the GCI, however little to no improvement was noted in the post-test. In contrast to the GCI, remarkable improvement in student learning is illustrated by the instructor-specific test. Possible reasons for this result are as follows, students may have adapted more to the individual instructor's test writing style and teaching style throughout the semester. The pre-test and post-test for the instructor given tests were assigned as a grade, perhaps prompting the student to take the test more seriously and consider the answers more carefully. The questions written are instructor-specific and course-specific, meaning that the students likely were introduced to the concept more thoroughly and multiple times.

Share

COinS