Graduation Year
2009
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Biology (Integrative Biology)
Major Professor
Valerie J. Harwood, Ph.D.
Committee Member
Daniel V. Lim, Ph.D.
Committee Member
Kathleen Scott, Ph.D.
Committee Member
Diane TeStrake, Ph.D.
Committee Member
Degeng Wang, Ph.D.
Keywords
community structure, DGGE, methanogens, BOX-PCR, VRE.
Abstract
Degradation of the several million tons of solid waste produced in the U.S. annually is microbially mediated, yet little is known about the structure of prokaryotic communities actively involved in the waste degradation process. In the first study, leachates generated during degradation of municipal solid waste (MSW) in the presence (co-disposal) or absence of biosolids were analyzed using laboratory-scale bioreactors over an eight-month period. Archaeal and bacterial community structures were investigated by denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes. Regardless of waste composition, microbial communities in bioreactor leachates exhibited high diversity and temporal trends. Methanogen sequences from a co-disposal bioreactor were predominantly affiliated with the orders Methanosarcinales and Methanomicrobiales. Effect of moisture content on indicator organism (IO) survival during waste degradation was studied using culture-based methods. Fecal coliform and Enterococcus concentrations in leachate decreased below detection limits within fifty days of bioreactor operation during the hydrated phase. IOs could be recovered from the bioreactor leachate even after a prolonged dry period. This study advances the basic understanding of changes in the microbial community during solid waste decomposition.
The purpose of the second study was to compare the ability of BOX-PCR to determine genetic relatedness with that of the "gold standard" method, 16S rRNA gene sequencing. BOX-PCR typing could clearly differentiate the strains within different Enterococcus species but closely related genera were not as distinguishable. In contrast, 16S rRNA gene sequencing clearly differentiates between closely related genera but cannot distinguish between different strains of Enterococcus species. This study adds to our knowledge of genetic relationships of enterococci portrayed by two separate molecular methods.
The incidence of vancomycin resistant enterococci (VRE) in environmental matrices, residential and hospital wastewater was also investigated. Low-level VRE (vanC genotype) were isolated from environmental matrices and residential wastewater. VRE isolates from hospital wastewater were identified as E. faecium and demonstrated resistance to ampicillin, ciprofloxacin and vancomycin (vanA genotype), but sensitivity to chloramphenicol and rifampin. Although no high-level VRE were isolated from surface waters, the high proportion of low-level VRE in environmental matrices is a cause for concern from the public health perspective.
Scholar Commons Citation
Nayak, Bina S., "Microbial Population Analysis in Leachate From Simulated Solid Waste Bioreactors and Evaluation of Genetic Relationships and Prevalence of Vancomycin Resistance Among Environmental Enterococci" (2009). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/3910