Graduation Year

2010

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Biology (Integrative Biology)

Major Professor

Philip J. Motta, Ph.D.

Committee Member

Stephen Deban, Ph.D.

Committee Member

James Garey, Ph.D

Committee Member

Stephen Kajiura, Ph.D.

Committee Member

Robert Hueter, Ph.D.

Keywords

bite force, performance, functional morphology, morphometrics, constraints

Abstract

The relationship between form and function is often used to elucidate the biological role of a structure. Hammerhead sharks offer a unique opportunity to study form and function through phylogeny. Because sphyrnid sharks display a range of cranial morphologies this group can be used to address questions about the evolution of cranial design and investigate the effects of changes in head morphology on feeding structures and bite force. Geometric morphometrics, volumetric analyses, morphological dissections, and phylogenetic analyses of the cephalofoil were used to gain insight into changes in cranial design through evolutionary history. External morphometrics and internal volumetric analyses indicated that while the external shape of the cephalofoil and placement of the sensory structures is variable through evolutionary history, the volumes of the internal cranial elements do not change. Constructional constraints within the cephalofoil were confined to sensory structures while feeding morphology remained relatively unchanged. Analysis of the morphology and biomechanics of the feeding apparatus revealed that through phylogeny the feeding system does not change among sphyrnid species. However, size-removed bite force was lower than predicted for all sphyrnid species except Sphyrna mokarran. Despite differences in head morphology between sphyrnid and carcharhinid sharks, the feeding bauplan is conserved in sphyrnid sharks with few changes to the feeding structures. Instead the chondrocranial and sensory structures are modified around the relatively static feeding core. Finally, the durophagous S. tiburo was found to consume hard prey in a manner that is biomechanically and morphologically different from other durophagous fishes. Furthermore, the diet of S. tiburo is constrained by the properties of its preferred prey.

Share

COinS