Graduation Year

2011

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Secondary Education

Major Professor

Denisse R. Thompson, Ph.D.

Committee Member

Richard Austin, Ph.D.

Committee Member

Catherine A. Beneteau, Ph.D.

Committee Member

Helen Gerretson, Ph.D.

Committee Member

Gladis Kersaint, Ph.D.

Keywords

Geometry, Transformations, Middle School, Mathematics Textbooks, Content Analysis

Abstract

This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum project textbook series, Connected Mathematics 2; and one non-NSF funded curriculum project, the University of Chicago School Mathematics Project (UCSMP).

A framework was developed to distinguish the characteristics in the treatment of geometric transformations and to determine the potential opportunity to learn transformation concepts as measured by textbook physical characteristics, lesson narratives, and analysis of student exercises with level of cognitive demand. Results indicated no consistency found in order, frequency, or location of transformation topics within textbooks by publisher or grade level.

The structure of transformation lessons in three series (Prentice Hall, Glencoe, and UCSMP) was similar, with transformation lesson content at a simplified level and student low level of cognitive demand in transformation tasks. The types of exercises found predominately focused on students applying content studied in the narrative of lessons. The typical problems and issues experienced by students when working with transformations, as identified in the literature, received little support or attention in the lessons. The types of tasks that seem to embody the ideals in the process standards, such as working a problem backwards, were found on few occurrences across all textbooks examined. The level of cognitive demand required for student exercises predominately occurred in the Lower-Level, and Lower-Middle categories.

Research indicates approximately the last fourth of textbook pages are not likely to be studied during a school year; hence topics located in the final fourth of textbook pages might not provide students the opportunity to experience geometric transformations in that year. This was found to be the case in some of the textbooks examined, therefore students might not have the opportunity to study geometric transformations during some middle grades, as was the case for the Glencoe (6, 7), and the UCSMP (6) textbooks, or possibly during their entire middle grades career as was found with the Prentice Hall (6, 7, Prealgebra) textbook series.

Share

COinS