Graduation Year
2011
Document Type
Thesis
Degree
M.S.M.E.
Degree Granting Department
Mechanical Engineering
Major Professor
Craig Lusk, Ph.D.
Committee Member
Autar Kaw, Ph.D.
Committee Member
Kyle Reed, Ph.D.
Keywords
Ortho-Planar, Microelectromechanical System, 3D MEMS, Virtual Work, Static Jump
Abstract
The bistable spherical compliant mechanism (BSCM) is a novel device capable of large, repeatable, out-of-plane motion, characteristics that are somewhat difficult to achieve with surface micromachined microelectromechanical systems. An improved pseudo-rigid-body model (PRBM) to predict the behavior of the BSCM is presented. The new model was used to analyze seven different versions of the device, each with a different compliant joint length. The new model, which adds torsion, is compared with a finite element analysis (FEA) beam model. The new model more closely approximates the results yielded by FEA than previous models used to analyze the BSCM. Future work is needed to quantify stress-stiffening interactions between bending and torsion. Both FEA and the current models show that increasing the length of the compliant segment decreases the amount of force required to actuate the device.
Scholar Commons Citation
Smith, Chester, "Modeling and Parameter Study of Bistable Spherical Compliant Mechanisms" (2011). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/3356