Graduation Year
2011
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Physics
Major Professor
David A. Rabson, Ph.D.
Co-Major Professor
Chun-Min Lo, Ph.D.
Committee Member
Garrett Matthews, Ph.D.
Committee Member
Lilia Woods, Ph.D.
Committee Member
Sagar Pandit, Ph.D.
Keywords
magnetic multilayers, magnetic anisotropy, cancer, random walk, fractional Brownian motion
Abstract
This work is a study of complex many-body systems with non-trivial interactions. Many such systems can be described with models that are much simpler than the real thing but which can still give good insight into the behavior of realistic systems. We take a look at two such systems. The first part looks at a model that elucidates the variety of magnetic phases observed in rare-earth heterostructures at low temperatures: the six-state clock model. We use an ANNNI-like model Hamiltonian that has a three dimensional parameter space and yields two-dimensional multiphase regions in this space. A low-temperature expansion of the free energy reveals an example of Villain’s ‘order from disorder’ [81, 60] when an infinitesimal temperature breaks the ground-state degeneracy. The next part of our work describes biological systems. Using ECIS (Electric Cell-Substrate Impedance Sensing), we are able to extract complex impedance series from a confluent layer of live cells. We use simple statistics to characterize the behavior of cells in these experiments. We compare experiment with models of fractional Brownian motion and random walks with persistence. We next detect differences in the behavior of single cell types in a toxic environment. Finally we develop a very simple model of micromotion that helps explain the types of interactions responsible for the long-term and short-term correlations seen in the power spectra and autocorrelation curves extracted from the times series produced from the experiments.
Scholar Commons Citation
Lovelady, Douglas Carroll, "A Study of Complex Systems: from Magnetic to Biological" (2011). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/3216