Graduation Year
2011
Document Type
Thesis
Degree
M.S.P.H.
Degree Granting Department
Public Health
Major Professor
Thomas E. Bernard, Ph.D.
Committee Member
Steven Mlynarek, Ph.D.
Committee Member
Yehia Y. Hammad, Sc.D.
Committee Member
Candi D. Ashley, Ph.D.
Keywords
Protective Clothing, Evaporative Cooling, Heat Exchange, Water Vapor Diffusion, Convective Transport
Abstract
Failure to maintain thermal equilibrium can cause uncontrollable increases in body core temperature beyond critical upper limits. In selecting clothing, consideration must be given to the heat transfer properties of clothing that may restrict the cooling capacity of the human body under heat stress conditions, most importantly, apparent total evaporative resistance (Re,T,a). This study calculated and compared Re,T,a for five clothing ensembles under varying heat stress conditions, including three relative humidity (RH) levels and three stages of heat stress to determine if Re,T,a values varied or remained the same with changes in heat stress conditions. A four-way mixed model analysis of variance demonstrated significant differences for estimated Re,T,a values among ensembles, RH levels, heat stress stages, and interactions among ensembles and RH levels and ensembles and heat stress stages (p < 0.0001). No significant interaction among RH levels and heat stress stages was found (p = 0.67). A Tukey's Honestly Significant Difference multiple comparison test was used to identify where significant differences occurred (p < 0.05). The results of the study indicated that Re,T,a values do change with RH levels and stages of heat stress and that the theoretical framework for explaining heat-exchange in hot environments is not yet well-established. Also confirmed was the dominance of the convection pathway over the diffusion pathway in hot environments.
Scholar Commons Citation
Dooris, Matthew David, "Apparent Total Evaporative Resistance Values From Human Trials Over a Range of Metabolic and Heat Stress Levels" (2011). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/3078
Included in
American Studies Commons, Environmental Health and Protection Commons, Industrial Engineering Commons, Occupational Health and Industrial Hygiene Commons