Graduation Year

2006

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Chemistry

Major Professor

Julie P. Harmon, Ph.D.

Keywords

Poly(2-hydroxyethyl methacrylate), Poly(2,3-dihydroxypropyl methacrylate), Dielectric analysis, Hydrogel

Abstract

ABSRACT: This research focuses on two hydrophilic polymers that form hydrogels when they sorb water: Poly(2-hydroxyethyl methacrylate) (PHEMA) and Poly(2,3-dihydroxypropyl methacrylate) (PDHPMA). Present work in the field obviated the need to properly characterize the thermal and dielectric properties of these materials.The dielectric permittivity, e', and the loss factor, e", of dry poly(2-hydroxyethyl methacrylate) and poly(2,3-dihydroxypropyl methacrylate) were measured using a dielectric analyzer in the frequency range of 0.1Hz to 100 kHz and between the temperature range of -150 °C to 275°C. The dielectric response of the sub-Tg gamma transition of PHEMA has been widely studied before but little to no DEA data above 50°C is present in the literature. This study is the first to present the full range dielectric spectrum of PHEMA, PDHPMA and their random copolymers up to and above the glass transition region.

The electric modulus formalism and several mathematical proofs were used to reveal the gamma, beta, alpha and conductivity relaxations. Dielectric analysis gives insight into the network structure of the polymer; it has been shown through thermal analyses that as the DHPMA content increased in HEMA-DHPMA copolymers the polymer matrix increased in available free volume and facilitated the movement of ions in its matrix. This is of significance as we then investigated the feasibility of using PHEMA, PDHPMA and their random copolymers as materials for a biocompatible coating for an implantable glucose sensor. The biocompatibility of hydrogels can be attributed to the low interfacial tension with biological fluids, high gas permeability, high diffusion of low molecular weight compounds, and reduced mechanical and frictional irritation to surrounding tissue. Once the biocompatibility of the hydrogels was established, the task to coat the polyurethane (PU)/epoxy coated metal glucose sensor was addressed.

Plasma polymerization was found to be the most feasible technique for the application of the biocompatible hydrogel as a coating on the implantable glucose sensor. It has also been shown that thermal analysis techniques provide a mode of investigation that can be used to investigate the interfacial interactions of a novel hydroxylated, self-assembled nanoparticle with two functionally different polymers, poly(2-dihydroxyethyl methacrylate) and poly(methyl methacrylate).

Share

COinS