Graduation Year
2006
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Electrical Engineering
Major Professor
Wilfrido A. Moreno, Ph.D.
Keywords
Dielectrophoresis, Hydrogels, Microfluidics, PDMS, Softlithography
Abstract
In recent years, BioMEMS/NEMS have been primary elements associated with the research and development efforts in the bioengineering area. International and federal funding has effected an enormous increase in the development of state-of-the-art bioengineering and biomedical technologies. Most of the BioMEMS/NEMS related applications are associated with diagnostics, sensing and detection. Procedures for separation and manipulation of biological components play a paramount role in the function of these bioengineering mechanisms. This research was concerned with the development of a novel BioMEMS device for cell manipulation. The functioning of the device is based on the use of thermally responsive polymer networks, which differs dramatically from existing approaches. This approach is cost effective, requires low power and uses a minimal amount of on-device area, which makes it suitable for personal medical diagnostics and battle field scenarios.
The device integrates the technologies associated with reversibly binding surfaces and dielectrophoresis, (DEP). The DEP field drives a sample into contact with a binding surface. This surface can be controlled to provide different levels of target selectivity. This system provides a separation strategy that does not suffer from fouling issues. The binding surfaces are fabricated from LCST polymers. The LCST polymers experience hydration-dehydration changes in response to temperature fluctuations. Therefore, separation efficiency can be "dialed in" as a function of temperature to prompt the selection of targets. Furthermore, size-exclusion "trenches" were patterned into the binding surfaces. The trenches permit the passage of the small objects in order to provide size-exclusion separations.
In order to expand the discrimination size range from the micron to the submicron scale, two techniques for submicron patterning of cross-linked reversibly binding surfaces were investigated. The patterning techniques associated with electron-beam lithography and the combination of softlithography and a focused ion beam patterning were found to generate well-defined patterns that retained their thermo-responsiveness. The combination of DEP and reversibly binding surfaces for bio-particle manipulation is a significant contribution to microfluidic based separations in BioMEMS/NEMS. The developments associated with this research provide a novel technology platform that facilitates separations, which would be difficult to achieve by any other existing methods.
Scholar Commons Citation
Mier, Alexandro Castellanos, "Poly(N-Isopropylacrylamide) based BioMEMS/NEMS for cell manipulation" (2006). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/2632