Graduation Year

2009

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Molecular Medicine

Major Professor

Lori Hazlehurst, Ph.D.

Committee Member

George Blanck, Ph.D.

Committee Member

William Dalton, Ph.D.

Committee Member

Andreas Seyfang, Ph.D.

Committee Member

Larry Solomonson, Ph.D.

Keywords

imatinib, nilotinib, dasatinib, STAT5, hematopoiesis, cytokines

Abstract

Imatinib mesylate (imatinib) represents a potent molecularly targeted therapy against the oncogenic tyrosine kinase, BCR-ABL. Although imatinib has shown considerable efficacy against chronic myeloid leukemia (CML), displaying high rates of complete hematological and complete cytogenetic responses, treatment with imatinib is not curative and overtime advanced-stage CML patients often become refractory to further treatment. Acquired resistance to imatinib has been associated with mutations within the kinase domain of BCR-ABL, BCR-ABL gene amplification, leukemic stem cell quiescence as well as over-expression of the multidrug resistance (MDR1) gene. However, in vitro resistance models often fail to consider the role of the tumor microenvironment in the emergence of the imatinib-resistant phenotype. The bone marrow is the predominant microenvironment of CML and is a rich source of both soluble factors and extracellular matrixes, which may influence drug response. To address the influence of the bone marrow microenvironment on imatinib sensitivity, we utilized an in vitro co-culture bone marrow stroma model. Using a transwell system, we demonstrated that soluble factors secreted by the human bone marrow stroma cell line, HS-5, were sufficient to cause resistance to apoptosis induced by imatinib in CML cell lines. We subsequently determined that culturing CML cells in HS-5-derived conditioned media (CM) inhibits apoptosis induced by imatinib and other second generation BCR-ABL inhibitors. These data suggest that more potent BCR-ABL inhibitors will not overcome resistance associated with the bone marrow microenvironment. Additionally, we determined that CM increases the clonogenic survival of CML cells following treatment with imatinib. HS-5 cells are reported to express several cytokines and growth factors known to activate signal transducer and activator of transcription 3 (STAT3). Given its crucial role in the survival of hematopoietic cells, we asked whether, 1) CM derived from HS-5 cells can activate STAT3 in CML cells and 2) does activation of STAT3 confer resistance to BCR-ABL inhibitors. We demonstrated that exposure of the CML cell lines, K562 and KU812, to CM caused an increase in phospho-Tyr STAT3, while no increases in phospho-Tyr STAT5 were noted. Moreover, resistance was associated with increased levels of the STAT3 target genes, Bcl-xl, Mcl-1 and survivin. Furthermore, reducing STAT3 levels with siRNA sensitized K562 cells cultured in CM to imatinib-induced cell death (p<0.05, Student’s t-test). Importantly, STAT3 dependency was specific for cells grown in CM, as reducing STAT3 levels in regular growth conditions had no effect on imatinib sensitivity. Together, these data support a novel mechanism of BCR-ABL-independent imatinib resistance and provide preclinical rationale for using STAT3 inhibitors to increase the efficacy of imatinib within the context of the bone marrow microenvironment.

Share

COinS