Graduation Year
2003
Document Type
Thesis
Degree
M.S.C.S.
Degree Granting Department
Computer Science
Major Professor
Sudeep Sarkar, Ph.D.
Co-Major Professor
John Heine, Ph.D.
Committee Member
N.Ranganathan, Ph.D.
Keywords
mass segmentation, laws' texture features, expectation maximization
Abstract
The work presented here is an important component of an on going project of developing an automated mass classification system for breast cancer screening and diagnosis for Digital Mammogram applications. Specifically, in this work the task of automatically separating mass tissue from normal breast tissue given a region of interest in a digitized mammogram is investigated. This is the crucial stage in developing a robust automated classification system because the classification depends on the accurate assessment of the tumor-normal tissue border as well as information gathered from the tumor area. In this work the Expectation Maximization (EM) method is developed and applied to high resolution digitized screen-film mammograms with the aim of segmenting normal tissue from mass tissue. Both the raw data and summary data generated by Laws' texture analysis are investigated. Since the ultimate goal is robust classification, the merits of the tissue segmentation are assessed by its impact on the overall classification performance.
Based on the 300 image dataset consisting of 97 malignant and 203 benign cases, a 63% sensitivity and 89% specificity was achieved. Although, the segmentation requires further investigation, the development and related computer coding of the EM algorithm was successful. The method was developed to take in account the input feature correlation. This development allows other researchers at this facility to investigate various input features without having the intricate understanding of the EM approach.
Scholar Commons Citation
Shinde, Monika, "Computer Aided Diagnosis In Digital Mammography: Classification Of Mass And Normal Tissue" (2003). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1477