Graduation Year
2004
Document Type
Dissertation
Degree
Ph.D.
Degree Granting Department
Marine Science
Major Professor
Gabriel A. Vargo, Ph.D.
Committee Member
Karen A. Steidinger, Ph.D.
Committee Member
Gary L. Hitchcock, Ph.D.
Committee Member
Kent A. Fanning, Ph.D.
Committee Member
John J. Walsh, Ph.D.
Keywords
Synechococcus, competition, salinity, light, phosphorus, nitrogen
Abstract
Areally expansive, persistent and recurring blooms frequently dominated by cyanobacteria have developed primarily in the north-central region of Florida Bay since approximately 1991. This part of the bay has a history of the following: periodic hypersalinity, high sediment-derived turbidity, P limitation, N limitation, light limitation and long water residence time. Clonal isolates of selected dominant bloom species of cyanobacteria (Synechococcus cf. elongatus and Synechocystis sp.) and diatoms (Chaetoceros cf. salsugineus and Thalassiosira cf. oceanica) from Florida Bay were examined in an effort to explain their relative dominance of the phytoplankton community.
The following physiological characteristics and nutrient strategies of the study species were examined: (1) salinity-growth response; (2) light-growth response; (3) phosphorus-dependent growth kinetics; (4) ERC-theory phosphorus competitiveness; (5) cellular quotas and luxury storage capabilities of N and P; (6) optimal N:P ratios; (7) P and N-limited competitiveness under various salinities, N:P ratios, forms of N and P, and rates of nutrient delivery; (8) aerobic nitrogen fixation; (9) production of allelochemic compounds, and (10) response to resuspended sediment.
This study identified salinity and nutrient limitation as the factors having the greatest potential to regulate the development of cyanobacteria and diatom bloom dominance in Florida Bay. The results strongly suggest that the frequent dominance of Synechococcus cf. elongatus, and Synechocystis sp. in the recurring phytoplankton blooms of the north-central region of Florida Bay can be attributed to their superior P-competitiveness and to a lesser degree to their greater salinity tolerance limits.
Scholar Commons Citation
Richardson, Ralph William,, "Florida Bay Microalgae Blooms: Physiological Characteristics and Competitive Strategies of Bloom Forming Cyanobacteria and Diatoms of Florida Bay" (2004). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1222