Graduation Year
2004
Document Type
Thesis
Degree
M.S.
Degree Granting Department
Chemistry
Major Professor
Bill J. Baker, Ph.D.
Committee Member
Edward Turos, Ph.D.
Committee Member
Kirpal Bisht, Ph.D.
Keywords
furanones, Pulchralide, dimer, secondary metabolites, antifouling
Abstract
Our interest in the red alga Delisea pulchra (=D.fimbriata) (Greville) Montagne 1844 (Rhodophyceae, Bonnemaisoniales, Bonnemaisoniaceace) was stimulated by its activity in the biosssays done at Wyeth Pharmaceuticals. Halogenated compounds from D. pulchra interfere with Gram-negative bacterial signaling systems, affect the growth of Gram-positive bacteria, inhibit quorum sensing and swarming motility of marine bacteria (inhibit bacterial communication). They also inhibit surface colonization in marine bacteria and exhibit antifouling properties against barnacle larvae and macroalgal gametes.
Chemical investigation of D.pulchra collected near Palmer Station, Antarctica yielded three new dimeric halogenated furanones, pulchralide A-C (41-43), along with previously reported fimbrolide (21), acetoxyfimbrolide (22), hydroxyfimbrolide (23) and halogenated ketone 40. The reported Compounds were characterized by comparison of their 1H and 13C NMR data with that previously published. Pulchralide A-C were characterized by both 1D (1H NMR, 13C NMR, DEPT, 1H-1H COSY) and 2D (gHMQC, gHMBC) NMR techniques, supported by HREIMS/HRESIMS data. The absolute stereochemistry of Pulchralide A was determined by a single crystal X-ray analysis. Significant antimicrobial activity was observed in acetoxyfimbrolide (22) and hydroxyfimbrolide (23), where as pulcharlide A (41) and fimbrolide (21) were weakly active.
Scholar Commons Citation
Nandiraju, Santhisree, "Chemical and Biological Investigation of the Antarctic Red Alga Delisea pulchra" (2004). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1176