Graduation Year

2025

Document Type

Thesis

Degree

M.S.Cp.

Degree Name

MS in Computer Engineering (M.S.C.P.)

Degree Granting Department

Computer Science and Engineering

Major Professor

Alfredo Weitzenfeld, Ph.D.

Committee Member

Ankur Mali, Ph.D.

Committee Member

John Murray-Bruce, Ph.D.

Keywords

Artificial Intelligence, Machine Learning, Options Architecture, Robotics

Abstract

Hierarchical reinforcement learning (HRL) is hypothesized to be able to take advantage of the inherent hierarchy in robot learning tasks with sparse reward schemes, in contrast to more traditional reinforcement learning algorithms. In this research, hierarchical reinforcement learning is evaluated and contrasted with standard reinforcement learning in complex navigation tasks. We evaluate unique characteristics of HRL, including their ability to create sub-goals and the termination function. We constructed experiments to test the differences between PPO and HRL, different ways of creating sub-goals, manual vs automatic sub-goal creation, and the effects of the frequency of termination on performance. These experiments highlight the advantages of HRL and how it achieves these advantages.

Share

COinS