Improved Identification of Data Correlations through Correlation Coordinate Plots

Document Type

Conference Proceeding

Publication Date

2016

Keywords

Correlation, Correlation Visualization, Statistical Visualization

Digital Object Identifier (DOI)

https://doi.org/10.5220/0005717500600071

Abstract

Correlation is a powerful relationship measure used in science, engineering, and business to estimate trends and make forecasts. Visualization methods, such as scatterplots and parallel coordinates, are designed to be general, supporting many visualization tasks, including identifying correlation. However, due to their generality, they do not provide the most efficient interface, in terms of speed and accuracy. This can be problematic when a task needs to be repeated frequently. To address this shortcoming, we propose a new correlation task-specific visualization method called Correlation Coordinate Plots (CCPs). CCPs transform data into a powerful coordinate system for estimating the direction and strength of correlation. To support multiple attributes, we propose 2 additional interfaces. The first is the Snowflake Visualization, a focus+context layout for exploring all pairwise correlations. The second enhances the basic CCP by using principal component analysis to project multiple

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - IVAPP, 60-71, 2016 , Rome, Italy

Share

COinS