3-D Force Control on the Human Fingerpad Using a Magnetic Levitation Device for Fingernail Imaging Calibration

Document Type

Conference Proceeding

Publication Date

3-2009

Digital Object Identifier (DOI)

https://doi.org/10.1109/WHC.2009.4810883

Abstract

This paper demonstrates fast, accurate, and stable force control in three axes simultaneously when a flat surface is pressed against the human fingerpad. The primary application of this force control is for the automated calibration of a fingernail imaging system, where video images of the human fingernail are used to predict the normal and shear forces that occur when the fingerpad is pressed against a flat surface. The system consists of a six degree-of-freedom magnetic levitation device (MLD), whose flotor has been modified to apply forces to the human fingerpad, which is resting in a passive restraint. The system is capable of taking simultaneous steps in normal force and two axes of shear forces with a settling time of less than 0.2 seconds, and achieves a steady-state error as small as 0.05 N in all three axes. The system is also capable of tracking error of less than 0.2 N when the shear force vector rotates with a frequency of 1 rad/s. This paper also demonstrates the successful tracking of a desired force trajectory in three dimensions for calibrating a fingernail imaging system.

Was this content written or created while at USF?

No

Citation / Publisher Attribution

World Haptics 2009 - Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, 2009, p. 411-416.

Share

COinS