Effect of Geometrical and Material Parameters in Nanoindentation of Layered Materials with an Interphase
Document Type
Article
Publication Date
2007
Keywords
functionally graded materials, indentation, mechanical properties, shear stress, substrate, thin film
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.ijsolstr.2007.01.008
Abstract
Indentation models for thin layer-substrate geometry with an interphase have been developed. The interphase can be modeled either as a nonhomogeneous layer or as a homogeneous layer. Between the two models of the interphase, contact depth and critical interfacial stresses are compared to find the effect of indentation area, film and substrate Young's moduli, and the interphase and film thicknesses. Although contact depth is found not to be sensitive to the type of interphase model used, critical interfacial stresses are significantly different (up to 15%) for film to substrate elastic Young's moduli ratios of more than 25. A formal sensitivity analysis based on design of experiments shows that on critical interfacial stresses, interphase to film thickness ratio and film to substrate Young's moduli ratio has the most impact, while type of elastic moduli variation in the interphase and indentor width to film thickness ratio has the least impact.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
International Journal of Solids and Structures, v. 44, issue 16, p. 5380-5395
Scholar Commons Citation
Chalasani, Praveen; Kaw, Autar; Daly, John; and Nguyen, Cuong Q., "Effect of Geometrical and Material Parameters in Nanoindentation of Layered Materials with an Interphase" (2007). Mechanical Engineering Faculty Publications. 163.
https://digitalcommons.usf.edu/egr_facpub/163