Assessing the Predictive Utility of Logistic Regression, Classification and Regression Tree, Chi-Squared Automatic Interaction Detection, and Neural Network Models in Predicting Inmate Misconduct
Document Type
Article
Publication Date
2015
Keywords
Actuarial risk assessment techniques, Comparative statistical techniques, Logistic regression, Classification and regression tree, Chi-squared automatic interaction detection, Neural networks, Importation model, Inmate misconduct
Digital Object Identifier (DOI)
https://doi.org/10.1007/s12103-014-9246-6
Abstract
This study assesses the relative utility of a traditional regression approach - logistic regression (LR) - and three classification techniques - classification and regression tree (CART), chi-squared automatic interaction detection (CHAID), and multi-layer perceptron neural network (MLPNN)—in predicting inmate misconduct. The four models were tested using a sample of inmates held in state and federal prisons and predictors derived from the importation model on inmate adaptation. Multi-validation procedure and multiple evaluation indicators were used to evaluate and report the predictive accuracy. The overall accuracy of the four models varied between 0.60 and 0.66 with an overall AUC range of 0.60–0.70. The LR and MLPNN methods performed significantly better than the CART and CHAID techniques at identifying misbehaving inmates and the CHAID method outperformed the CART approach in classifying defied inmates. The MLPNN method performed significantly better than the LR technique in predicting inmate misconduct among the training samples.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
American Journal of Criminal Justice, v. 40, p. 47-74
Scholar Commons Citation
Ngo, Fawn T.; Govindu, Ramakrishna; and Agarwal, Anurag, "Assessing the Predictive Utility of Logistic Regression, Classification and Regression Tree, Chi-Squared Automatic Interaction Detection, and Neural Network Models in Predicting Inmate Misconduct" (2015). Criminology Sarasota Manatee Campus Faculty Publications. 24.
https://digitalcommons.usf.edu/cjp_facpub_sm/24