Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C–H Alkylation

Document Type


Publication Date


Digital Object Identifier (DOI)



Radical cyclization represents a powerful strategy for construction of ring structures. Traditional radical cyclization, which is based on radical addition as the key step, necessitates the use of unsaturated substrates. Guided by the concept of metalloradical catalysis, a different mode of radical cyclization that can employ saturated C−H substrates is demonstrated through the development of a Co(II)-based system for catalytic activation of aliphatic diazo compounds for enantioselective radical alkylation of various C(sp3)−H bonds. It allows for efficient construction of chiral pyrrolidines and other valuable 5-membered cyclic compounds. This alternative strategy of radical cyclization provides a new retrosynthetic paradigm to prepare five-membered cyclic molecules from readily available open-chain aldehydes through the union of C−H and C=O elements for C−C bond formation.

Was this content written or created while at USF?


Citation / Publisher Attribution

Journal of the American Chemical Society, v. 140, issue 14, p. 4792-4796