Document Type

Article

Publication Date

11-2016

Keywords

Adult, Animals, Bacteroides, Cats, Dogs, Escherichia coli, Feces, Female, Fresh Water, Hawaii, Humans, Male, Middle Aged, Polymerase Chain Reaction, Polyomavirus, Seawater, Sewage, Sunlight, Water Microbiology, Water Pollution, Water Quality

Digital Object Identifier (DOI)

https://doi.org/10.1128/AEM.01959-16

Abstract

Identification of sources of fecal contaminants is needed to (i) determine the health risk associated with recreational water use and (ii) implement appropriate management practices to mitigate this risk and protect the environment. This study evaluated human-associated Bacteroides spp. (HF183TaqMan) and human polyomavirus (HPyV) markers for host sensitivity and specificity using human and animal fecal samples collected in Hawaii. The decay rates of those markers and indicator bacteria were identified in marine and freshwater microcosms exposed and not exposed to sunlight, followed by field testing of the usability of the molecular markers. Both markers were strongly associated with sewage, although the cross-reactivity of the HF183TaqMan (also present in 82% of canine [n = 11], 30% of mongoose [n = 10], and 10% of feline [n = 10] samples) needs to be considered. Concentrations of HF183TaqMan in human fecal samples exceeded those in cross-reactive animals at least 1,000-fold. In the absence of sunlight, the decay rates of both markers were comparable to the die-off rates of enterococci in experimental freshwater and marine water microcosms. However, in sunlight, the decay rates of both markers were significantly lower than the decay rate of enterococci. While both markers have their individual limitations in terms of sensitivity and specificity, these limitations can be mitigated by using both markers simultaneously; ergo, this study supports the concurrent use of HF183TaqMan and HPyV markers for the detection of sewage contamination in coastal and inland waters in Hawaii.

IMPORTANCE: This study represents an in-depth characterization of microbial source tracking (MST) markers in Hawaii. The distribution and concentrations of HF183TaqMan and HPyV markers in human and animal fecal samples and in wastewater, coupled with decay data obtained from sunlight-exposed and unexposed microcosms, support the concurrent application of HF183TaqMan and HPyV markers for sewage contamination detection in Hawaii waters. Both markers are more conservative and more specific markers of sewage than fecal indicator bacteria (enterococci and Escherichia coli). Analysis of HF183TaqMan (or newer derivatives) is recommended for inclusion in future epidemiological studies concerned with beach water quality, while better concentration techniques are needed for HPyV. Such epidemiological studies can be used to develop new recreational water quality criteria, which will provide direct information on the absence or presence of sewage contamination in water samples as well as reliable measurements of the risk of waterborne disease transmission to swimmers.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Applied and Environmental Microbiology, v. 82, issue 10, p. 6757-6767

Share

COinS