Document Type
Article
Publication Date
11-28-2006
Keywords
checkpoints, genome instability, RRM3, SGS1
Digital Object Identifier (DOI)
http://doi.org/10.1073/pnas.0608566103
Abstract
Saccharomyces cerevisiae mutants lacking two of the three DNA helicases Sgs1, Srs2, and Rrm3 exhibit slow growth that is suppressed by disrupting homologous recombination. Cells lacking Sgs1 and Rrm3 accumulate gross-chromosomal rearrangements (GCRs) that are suppressed by the DNA damage checkpoint and by homologous recombination-defective mutations. In contrast, rrm3, srs2, and srs2 rrm3 mutants have wild-type GCR rates. GCR types in helicase double mutants include telomere additions, translocations, and broken DNAs healed by a complex process of hairpin-mediated inversion. Spontaneous activation of the RadS3 checkpoint kinase in the rrm3 mutant depends on the Mec3/Rad24 DNA damage sensors and results from activation of the Mecl/Rad9-dependent DNA damage response rather than the Mrcl-dependent replication stress response. Moreover, helicase double mutants accumulate Rad51-dependent Ddc2 foci, indicating the presence of recombination intermediates that are sensed by checkpoints. These findings demonstrate that different nonreplicative helicases function at the interface between replication and repair to maintain genome integrity.
Scholar Commons Citation
Schmidt, Kristina H. and Kolodner, Richard D., "Suppression of Spontaneous Genome Rearrangements in Yeast DNA Helicase Mutants" (2006). Molecular Biosciences Faculty Publications. 5.
https://digitalcommons.usf.edu/bcm_facpub/5