Document Type
Article
Publication Date
12-22-2016
Digital Object Identifier (DOI)
https://doi.org/10.1038/srep38929
Abstract
Klebsiella pneumonia infection rates have increased dramatically. Molecular typing and virulence analysis are powerful tools that can shed light on Klebsiella pneumonia infections. Whereas 77.7% (28/36) of clinical isolates indicated multidrug resistant (MDR) patterns, 50% (18/36) indicated carpabenem resistance. Gene prevalence for the AcrAB efflux pump (82.14%) was more than that of the mdtK efflux pump (32.14%) in the MDR isolates. FimH-1 and mrkD genes were prevalent in wound and blood isolates. FimH-1 gene was prevalent in sputum while mrkD gene was prevalent in urine. Serum resistance associated with outer membrane protein coding gene (traT) was found in all blood isolates. IucC, entB, and Irp-1 were detected in 32.14%, 78.5% and 10.7% of MDR isolates, respectively. We used two Polymerase Chain Reaction (PCR) analyses: Enterobacterial Repetitive Intergenic Consensus (ERIC) and Random Amplified Polymorphic DNA (RAPD). ERIC-PCR revealed 21 and RAPD-PCR revealed 18 distinct patterns of isolates with similarity ≥80%. ERIC genotyping significantly correlated with resistance patterns and virulence determinants. RAPD genotyping significantly correlated with resistance patterns but not with virulence determinants. Both RAPD and ERIC genotyping methods had no correlation with the capsule types. These findings can help up better predict MDR Klebsiella pneumoniae outbreaks associated with specific genotyping patterns.
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Scientific Reports, v. 6, art. 38929
Scholar Commons Citation
Wasfi, Reham; Elkhatib, Walid F.; and Ashour, Hossam M., "Molecular Typing and Virulence Analysis of Multidrug Resistant Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Hospitals" (2016). Molecular Biosciences Faculty Publications. 13.
https://digitalcommons.usf.edu/bcm_facpub/13