Title

Upper-Truncated Power Law Distributions

Document Type

Article

Publication Date

2001

Digital Object Identifier (DOI)

https://doi.org/10.1142/S0218348X01000658

Abstract

Power law cumulative number-size distributions are widely used to describe the scaling properties of data sets and to establish scale invariance. We derive the relationships between the scaling exponents of non-cumulative and cumulative number-size distributions for linearly binned and logarithmically binned data. Cumulative number-size distributions for data sets of many natural phenomena exhibit a "fall-off" from a power law at the largest object sizes. Previous work has often either ignored the fall-off region or described this region with a different function. We demonstrate that when a data set is abruptly truncated at large object size, fall-off from a power law is expected for the cumulative distribution. Functions to describe this fall-off are derived for both linearly and logarithmically binned data. These functions lead to a generalized function, the upper-truncated power law, that is independent of binning method. Fitting the upper-truncated power law to a cumulative number-size distribution determines the parameters of the power law, thus providing the scaling exponent of the data. Unlike previous approaches that employ alternate functions to describe the fall-off region, an upper-truncated power law describes the data set, including the fall-off, with a single function.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Fractals, v. 9, issue 2, p. 209-222

Share

COinS