Document Type

Article

Publication Date

2015

Keywords

coastal wetlands, soil organic carbon, stability, pyrolysis, sea level rise

Digital Object Identifier (DOI)

https://doi.org/10.1002/2015GC005839

Abstract

Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. To understand the effect of sea level rise on organic carbon fate and preservation in this global sink, it is necessary to characterize differences in the biogeochemical stability of coastal wetland soil organic carbon (SOC). Here we use ramped pyrolysis/oxidation decomposition characteristics as proxies for SOC stability to understand the fate of carbon storage in coastal wetlands comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. Soils from three wetland types (fresh, brackish, and salt marshes) along a salinity gradient were subjected to ramped pyrolysis analysis to evaluate decomposition characteristics related to thermochemical stability of SOC. At equivalent soil depths, we observed that fresh marsh SOC was more stable than brackish and salt marsh SOC. Depth, isotopic, elemental, and chemical compositions, bulk density, and water content of SOC all exhibited different relationships with SOC stability across the marsh salinity gradient, indicative of different controls on SOC stability within each marsh type. The differences in stability imply stronger preservation potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Considering projected marsh ecosystem responses to sea level rise, these observed stability differences are important in planning and implementing coastal wetland carbon-focused remediation and improving climate model feedbacks with the carbon cycle. Specifically, our results imply that ecosystem changes associated with sea level rise will initiate the accumulation of less stable carbon in coastal wetlands.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Geochemistry, Geophysics, Geosystems, v. 16, issue 7, p. 2322-2335

©2015. American Geophysical Union. All Rights Reserved.

ggge20765-sup-0001-2015gc005839-supinfo.doc (63 kB)
Supporting Information S1

Included in

Life Sciences Commons

Share

COinS