Marine Science Faculty Publications

A History of the Selkirk Paleomicroplate

Document Type


Publication Date



South Pacific, Microplate, Kinematics, Mid-ocean ridges

Digital Object Identifier (DOI)


Located in the South Pacific, between latitudes 33°S and 38°S and longitudes 120°W and 125°W, the extinct Selkirk microplate was first described as originating from lithosphere transferred from the Nazca plate to the Pacific plate [Earth Planet. Sci. Lett. 113 (1992) 293]. Multibeam bathymetry data, backscatter imagery and magnetic data obtained in 1997 during the Foundation Hotline cruise permit a more complete and detailed characterisation of the evolution of this paleomicroplate. The western boundary of the paleomicroplate is a fossil-spreading axis composed by two segments presenting two southward propagations and fan-shaped opening. The eastern boundary of the paleomicroplate is formed by a northward-propagating rift. In the present-day, only the western part of the fan-shaped sequence is present in the Pacific plate. According to satellite altimetry data, the northern boundary is a complex compressive domain formed by N110 ridges and troughs. The southern boundary is located along the Mocha fracture zone. Our magnetic interpretation suggests that this microplate has been active between chron 6C (24 Ma) and chron 6Ar (anomaly 6A, reverse period; 20.8 Ma). The last stage of the Selkirk microplate evolution is marked by a compression in the southern boundary and a sinistral shearing along an associated N45 structure located in the microplate. These observations imply the transfer of the eastern southern boundary of the microplate, previously located along the Mocha fracture zone, to these complex structures. The observed structures imply a change of the microplate rotation axis for this last stage, leading to the locking of the microplate and the transfer of all the spreading to the eastern boundary.

Was this content written or created while at USF?


Citation / Publisher Attribution

Tectonophysics, v. 359, issue 1-2, p. 157-169