Marine Science Faculty Publications

Document Type


Publication Date


Digital Object Identifier (DOI)


Lithogenic sediment input to the Cariaco Basin on the eastern Venezuelan shelf is controlled by small mountainous rivers (SMRs). The Cariaco Basin is also an area of high phytoplankton productivity as a result of strong Trade Wind-driven coastal upwelling. Characterizing the sources that supply particulate organic carbon (POC) to the deep Cariaco Basin is important for interpreting the paleoclimate record stored in its sediments. We measured suspended POC in the four main rivers draining into the Caraiaco Basin, the Tuy, Unare, Neveri, and Manzanares, between September 2008 and September 2009 and conducted basin-wide oceanographic cruises in September 2008 (rainy season) and March 2009 (upwelling season). Riverine concentrations of dissolved organic carbon (DOC) and POC in the four rivers were comparable to observations made in similar tropical SMR systems (POC was between 0.3–2 mg C l−1; DOC was between 100–300 μM). Within the basin, the geochemical composition of surface particles and bottom nepheloid layers (BNLs) changed with season. During the rainy season, the isotopic composition of both surface particles and BNL was characteristic of continentally derived material (δ13Corg, approximately −30 to −26‰), while during upwelling, the composition shifted to values more typical of marine sources (δ13Corg, approximately −24 to −20‰). SMRs represent an important component of the global carbon budget, which are often overlooked in ocean carbon budgets and also in paleoclimate studies of coastal environments.

Was this content written or created while at USF?


Citation / Publisher Attribution

Journal of Geophysical Research: Biogeosciences, v. 124, issue 11, p. 3191-3207

©2019. American Geophysical Union. All Rights Reserved.

Included in

Life Sciences Commons