Marine Science Faculty Publications

Evaluation of Remote Sensing Reflectance Derived From the Sentinel-2 Multispectral Instrument Observations Using POLYMER Atmospheric Correction

Document Type


Publication Date



MODIS, Polymers, Sea measurements, Spatial resolution, Uncertainty, Atmospheric measurements, Sun

Digital Object Identifier (DOI)


With a five-day revisit frequency over coastal regions and a spatial resolution of 10-60 m, the Sentinel-2 multispectral instrument (MSI) has shown its capacity to provide a reasonably accurate remote sensing reflectance (R rs ) data product over water when the standard “black pixel” (BP) atmospheric correction algorithm was applied to the top-ofatmospheric (TOA) reflectance data. Alternative atmospheric correction approaches, such as the POLYnomial-based algorithm applied to Medium Resolution Imaging Spectrometer (MERIS) (POLYMER), may show advantages under nonoptimal observation conditions (e.g., in the presence of strong sun glint). Here, POLYMER is implemented to process the data collected by both MSI and the Moderate Resolution Imaging Spectroradiometer (MODIS) with the resulting R rs evaluated with concurrent and colocated in situ R rs data collected from the AERONET-OC platforms. The results indicate less uncertainties in the MSI Rrs than those in the MODIS R rs , and also less uncertainties in the MSI Rrs than those reported earlier. This is possibly attributed to the spatial heterogeneity of coastal waters where MODIS coarseresolution data may suffer, and to the high-quality AERONETOC data. In addition, for the evaluation data set, MSI R rs does not appear to suffer from adjacency effects from the AERONETOC platform and clouds, leading to more coverage than MODIS in nearshore waters. However, MSI R rs is noisy in relatively clear waters, possibly due to the noisy TOA reflectance in the atmospheric correction bands over clear waters.

Was this content written or created while at USF?


Citation / Publisher Attribution

IEEE Transactions on Geoscience and Remote Sensing, v. 58, issue 8, p. 5764-5771