Atmospheric Correction of Hyperspectral Airborne GCAS Measurements Over the Louisiana Shelf Using a Cloud Shadow Approach

Document Type


Publication Date


Digital Object Identifier (DOI)



As an image-driven method to correct for atmospheric effects, the cloud shadow (CS) approach does not require accurate radiometric calibration of the sensor, making it feasible to process remotely sensed data when radiometric calibration may contain non-negligible uncertainties. Using measurements from the Geostationary Coastal and Air Pollution Events Airborne Simulator and from the Moderate Resolution Imaging Spectroradiometer over the Louisiana Shelf, we evaluate the CS approach to airplane measurements in turbid-water environments. The original CS approach somehow produced remote-sensing reflectance (Rrs, sr−1) with an abnormal spectral shape, likely a result of the assumption of identical path radiance for the pair of pixels in and out of the shadow, which is not exactly valid for measurements made from a low-altitude airplane. To overcome this limitation, an empirical scheme using an effective wavelength-dependent radiance reflectance for the cloud (γ, sr−1) was developed and reasonable GCAS Rrs retrievals are then generated, which were further validated against in situ Rrs. Issues and challenges in applying CS to measurements of low-altitude airplanes are discussed.

Was this content written or created while at USF?


Citation / Publisher Attribution

International Journal of Remote Sensing, v. 38, issue 4, p. 1162-1179