Marine Science Faculty Publications

Remote Sensing of Particle Backscattering in Chesapeake Bay: a 6-Year Seawifs Retrospective View

Document Type


Publication Date



Chesapeake Bay, light backscattering, ocean color, remote sensing, SeaWiFS, suspended particulate matter, water quality

Digital Object Identifier (DOI)


Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997-December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P < 0.0005), and the satellite-derived bbp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m-1, November-February) and smallest in summer (<0.031 m-1, June-August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

Citation / Publisher Attribution

Estuarine, Coastal and Shelf Science, v. 73, issue 3-4, p. 792-806